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Time evolution equations for the density of reactants are derived for the diffusion-limited reaction
A+B—0 in a d-dimensional space by generalizing the Galanin approach to extended absorbers. The
solution of these equations agrees with simulations for the overall time regime. Perfect and imperfect re-
action cases are analyzed in d dimensions. With a uniform initial condition a critical dimension of 2 is

found for segregation.
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I. INTRODUCTION

The kinetics of the recombination process 4 +B —0
(or inert) has recently attracted considerable interest due
to the fact that segregation of like particles occurs, lead-
ing to anomalous reaction rate laws [1-10]. The sensi-
tivity of segregation to changes in initial conditions, pres-
ence of sources, disorder, external forces, etc., is remark-
able. Most of the recent literature is devoted to the
analysis of these phenomena under the assumption that
some kind of rate equations is valid.

In contrast with other reactions suchas A+ 4 — 4 or
A+ A —0, the recombination process does not have ex-
act solutions in one dimension, and in general the
analysis of this process is based on approximate schemes.
Since it is a many body problem, it is possible to obtain
an exact hierarchy of equations involving correlations of
higher orders. Truncation of this hierarchy by some ap-
proach yields a desirable mesoscopic level description in
which an evolution equation for the mean density with
effective time dependence coefficients results [11-13].

In this article, we will use a different framework for ob-
taining evolution equations at the mesoscopic level. Our
starting point is a stochastic equation for the density of a
species of particles in which the other species acts as an
absorber with a given absorption shape function. It is a
generalization to extended absorbers of the Galanin
methods used in nuclear reactor theory for modeling neu-
tron absorption [14]. This equation can be exactly aver-
aged. Then, by using a diagrammatic technique, it is pos-
sible to select and take into account the leading contribu-
tions for short and long times. The result is an equation
for the density of particles in which the reaction term is
given by a convolution in space and time of a kernel with
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the density. The same method has been recently used for
analyzing the evolution of the A+B-—B reaction
[15,16]. As pointed out there, the method has several ad-
vantages. On one hand, it is able to describe with good
precision the system evolution for any time, while usually
only asymptotic results are obtained. On the other hand,
the resulting equation is the continuous limit of a master
equation directly related to simulations. For this reason,
we always obtain a good agreement between simulations
and solutions of such an equation.

Since we have used a different scheme, the results ob-
tained yield a new point of view on the problem of segre-
gation in recombination processes. We have the possibili-
ty of varying the reaction length by controlling the prob-
ability of reaction. Then, it is possible to study perfect
and imperfect reaction cases. These changes have no
direct consequence for the long-time evolution, but they
have a drastic impact on the sensibility to fluctuations on
the initial conditions. In fact, we have obtained for segre-
gation a critical dimension of 2 with strictly homogene-
ous initial conditions. As is known, spatial fluctuations
on the initial conditions lead to a critical dimension
d.=4[9].

The paper is organized as follows. In Sec. II, the sto-
chastic equation governing the evolution of the particles
is formulated. This equation is exactly averaged in Sec.
ITII. By keeping the leading contribution for short and
long times, we obtain the final equations. In Sec. IV, the
relation of the equations and comparison of their solu-
tions with simulations is shown. In Sec. V, an extensive
analysis of the n-dimensional problem is made for the
case of uniform initial conditions. Finally, we present a
brief discussion of the results and include in the Appen-
dix a diagrammatic representation of the main equations.
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II. FORMULATION OF THE PROBLEM:
STOCHASTIC EVOLUTION EQUATION

We consider two kinds of particles, 4 and B, with in-
dependent motion and with the possibility of annihilation
when they are in contact. We assume that the motion of
an individual particle is a Markovian process with condi-
tional probability G(r,t|r’,t’) for the A particles and
W(r,t|r',t') for the B ones. These probabilities fulfill the
evolution equations

J
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G=L,G, (1a)
W=LyW, (1b)

with G(r,t|r',ty)=WI(r,t|r',ty)=86(r —r’) as initial con-
ditions, and with L ,, Ly being linear operators. The
Markovian character, which is essential in this formula-
tion, means that a joint probability in position and time
for one particle can be factored as

P(r 130505370yt )= (8 —r(£))8(ry—r(2,)) - -+ )

=W(r1,t1!r2,t2)‘ .t

where the brackets ( ) indicate an average over the
motion process.

Each process moves independently, but its existence
depends on the evolution of the other particles. We iden-
tify each particle with a numerical index. Since the num-
ber of particles is not conserved, the set of indices corre-
sponding to the existing particles varies with time {i(¢)]}.
The density of particles of one kind at time ¢ is given by

nA,B(i‘,t)=< 2

{i4,p()}

8(r, (t))> , (3)
A, B

where the average is also taken over all possible annihila-

tion processes. Another important density function is

defined as
nA,B(r,t'|t)=< S 8(r—r,-“(t’))> . (4)

{i“,m]

This corresponds to the density of particles at time ¢’ that
survive until time ¢. Both densities are related through

W(ry— 15ty —117nstn P(rpsty) (2)

Note that to invert these equations to obtain
n,p(r',t')|t) as a functional of n,p(r,1) is a quite
difficult task. Only when the evolution is essentially
diffusive or the density is rather uniform is it feasible.

Having specified the motion of the particles, we consid-
er now the reaction process. We assume that when two
particles of different species are close enough to each oth-
er, they can annihilate. The rate of probability of such a
process when the relative position between the particles
to r is given by a function y H (r), where € is a mean in-
teraction length, H, is a normalized function that tends
to 8(r) when €—0, and 7. is a rate of probability per unit
volume of interaction of one particle. Under this nota-
tion, the effective interaction time is given by e 9y .
The reaction will be either perfect (fast) or imperfect
(slow) if this time is shorter or longer than the collision
time [17]. The different possibilities depend on the kind
of motion, dimensionality, initial conditions, etc.

Finally, in order to formulate the evolution equations,
we define n 4 g(r,t[{B, A}) as the density of the 4 or B
particles conditioned to the occurrence of a process

nA(r,t)=fG(r,tIr',t’)ns(r',t’lt)dr' , (5a)  {r, (£)} or {r; (¢)} in the evolution of the B and A4 parti-
cles. Hence, the evolution of these densities is governed
nB(r,t)=fW(r,t|r’,t’)nB(r',t’|t)dr' . (5b) by
J
hiap(rt|{B,A))=L pn p(r,t|{B,A)=y. 3 Hdr—r, (t)n,p(rt[{B,4}]). (6)
lig 4(1)} ’

In this equation, the form of the reaction term is a gen-
eralization of the Galanin approach for extended ab-
sorbers. In the limit e—0, we recover the original Gala-
nin form of point absorbers. The indicated equations are
coupled in the sense that the target particles act like an
external absorber. The rate of absorption for each parti-
cle is then the same only in average. In other words, the
annihilation of one particle does not necessarily imply the
annihilation of the other. This is the main approximation
of the method. As can be seen from the simulations, this
approximation is excellent even when the reaction is im-
perfect. Clearly, in the perfect reaction case nearly all

.
particles react simultaneously, and the effect of the ap-
proximation has to be negligible.

II1. AVERAGE OF THE EVOLUTION EQUATIONS
AND DIAGRAMMATIC EXPANSIONS

A naive approximation for the average of Eq. (6) con-
sists of the factorization of the reaction term

<[i(2‘;”He(r—rtiA(t))nB(zHA } )>zn§f(z)n8(z) )

where the superscript H means a space convolution with
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the normalized function H:
fH(r,t)=fH(r—r')f(r’,t)dr’ . (8)

This corresponds to a mean field approximation that is
only valid at short-time intervals. An exact method for
the averaging of this type of equation is given in Ref.
[16]. With such a method, it is possible to find a sys-

S Azing(z)=3 A(2)G,,8(t)n(z)—y 3
(ie),iy(2)))

Ai(z)Gz,z‘Ail(zl )

{i(1)} {i(e)}

(—y)

{0, i)
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tematic expansion of products and convolutions of condi-
tional probabilities and mean densities. Here we exploit
this method with the same notation used therein.

For the sake of simplicity, we only consider one of the
equations (6). The other equation requires an identical
treatment. First we take the integral form of Eq. (6) and
after iteration and multiplication by 3 ;) H(r —riB(t ),

we obtain

A;(2)G, , A; (2))G, ,6(t')n 4(2')
1z, By 1

G,n,z_lﬁ(t’)nA(z')+ e 9)

where we have used the following shorthand notation: we denote by z; the pair (7;,¢;), z; indicates integration over the

variables 7;,; for all functions containing them, G

L2 18 G(r,t|r',t'), and A(z)

=H (r—r,(t)).

Now we average this equation, taking into account the factorization properties of the joint probability [Eq. (2)], ob-

taining
on 4
3t =L ng—yA,, (10)
where
A,(z)s<z Ai(z)nA(z)>
()
=<;,,,L.n,§’<z'|t)é‘»(t')nA(z')—yeW,”,]G,,,1 W G, .n5(2'12)8(2')n 4(2")
_?’eWszl G, n5(2,[1)G, n5(2)8(t")n 4(2')
: (_YG)anHzle zlel zy T Gz ,z_’S(t’)nA(z’)
X[nglz |0ng(zy) - mgl )+ W, W g2 0]+ (11

A more complete picture of this expansion is glven by means of the dlagrammatlc representatlon in the Appendlx
Note that all possible combinations of products of n} and W are present in the expansion. Since the densny is a
monotonically decreasing function of time, the long-time behavior will be dominated by the lowest orders in nf(t).

These terms can be summed, giving

A (2)=T(z,2))nf(z,|t)G, yng(z,1t)G, 8(t')n 4(2')

with

T(z,2')=8z—2" )~y G, Wiy +VG,, W, G, Wi .

ZZI 2,2, 72,

(12)

+.... (13)

The remaining terms can also be expressed in terms of these functions in such a way that the overall expansion reads

.)4.,4(2) T(z,z __L)nB(21|t)Gz za(t )nA(Z )
. (—?’e)"T(Z»ﬁ)Gz'z T(zl’f_Z)Gz;,zz' .

X[nfz)nf(zy) - nflz))+ -+ n

where the first term corresponds to the asymptotic long-
time contribution, terms with consecutive probabilities
22141 2 4 12 4, OV being forbidden. A more complete
representation of this expansion is given in the Appendix
using diagrammatic techniques.
Also, in order to get a good approximation for short
times, we must keep the contribution of the highest or-

T(2y,25 41005 (25 44 )G,".H

HESEEN R

’iﬁ(t')nA(z')

(14)

r

ders in n}. Hence, neglectmg the crossed terms of mixed
products of W and ng', A ,(z) will be the solution of the
following integral equation:

A 4(2)=T(z,2))n5(z,|1)G, ,8(t')n 4(2")

+T(z,zl)nB(zllz)G ﬂ 4(zy) . (15)
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By substituting (15) into (10) and using the identity
n(z)=G, 8(t")n (z')—y G, ;A 4(2'), (16)
we finally obtain an equation for n ,(z),

on 4
ot
valid for short and long times. One could obtain a com-

pletely similar equation for the averaged density of B par-
ticles as

=Lyn,=vT(z,z))n5(z,|t)n 4(z,), (17a)

ong

at
Equations (17a) and (17b) are the main result of this pa-
per. As pointed out in the preceding section, the deriva-
tion of nf(z,|¢) as a function of n(z) by means of (5) is
not possible, except in a few cases. Then, some approxi-
mations are necessary. They will depend on each particu-
lar problem, but, as a first approach, two alternatives are
possible, either n(z,|t)~n(z,) or n(z,|t)~n(z). The
first (a kind of sudden approximation) seems to be more
adapted to problems in which diffusion is the main
phenomenon. The second is an adiabatic approximation
valid when the shape of the density varies slowly or is
rather flat. In any case, the application of these equa-
tions to nonhomogeneous situations in cases where the
usual rate equations are no longer valid is a very interest-
ing problem, but it goes beyond the scope of the present
work. In the next sections, we analyze the uniform solu-
tions of these equations and compare them with simula-
tions.

=LBnB—7/5T(z,2_|)nf(zllt)n3(zl) . (17b)

—d/2
T(k,s)= (2m)
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IV. COMPARISON WITH SIMULATIONS
IN THE ONE-DIMENSIONAL HOMOGENEOUS CASE

In this section, we show how our method is very well
suited to explain Monte Carlo simulations, even in low
dimensions, and for all time regimes. For this compar-
ison, we choose a simple example consisting of a set of
particles 4 and B with the same uniform initial density
and with the same diffusion coefficient D. L, and Ly are
diffusion operators L ,=Lgz=A, and the correspond-
ing Green function has the usual form G=W
=(47Dt)"??exp(—r2/4Dt). In this case, the densities
of both species of particles are homogeneous and identi-
cal, n (t)=ng(t)=n(t). Then for the two extreme ap-
proximations mentioned in the preceding sections, we
have the evolution equations

an —yn(t) [ K(r—t")n(t')dt’ (adiabatic) , (18a)

dr —ny‘K(t—t')n(t')Zdt' (sudden) , (18b)

with K(¢)= f T(r,t)dr. In any practical application or
comparison with simulation, the condition of homogenei-
ty will only hold up to a finite time. At sufficiently long
times, inhomogeneities will develop due to the reaction,
and the process will end governed by Eq. (18b). Instead
of dealing with T'(z,z’') through the series in (13), it is
more convenient to consider its Fourier-Laplace trans-
form T(k,s); then the expression (13) reduces to

) (19)

14y 2m?2L 1 [ Gle—k',0)W(k',t)H (k" )dk’

where L { | means Laplace transform in time. In terms of
this function, K (¢) is given by

K(t)=2m)?2L " Y{T(k=0,s)} . (20)

Finally, for the sake of simplicity, we adopt a Gaussi-
an form for the interaction function H(r)
=(V2me) 'exp(—r2/4€*). In a contact interaction, €
would correspond to the size of the particles, whereas in
simulations it would be the lattice parameter. Substitut-
ing H_, G, and W into (19), and after inversion of the La-
place transform, in the one-dimensional case, for the
€—0 limit, we have the following equations:

dn —— 2 t Y ’ '

I yn +f0c(t t)n(t)n(t')dt' (21a)
ﬂ:_ 2 t 4! 1\2 747

i +f0c(t t)n(t'dt’ (21b)

with c(¢)=y[(mt)"2—aexp(a’t Jerfc(aV't)], a=vy/
v8D.

These are the final equations governing the evolution of
the density to be compared with simulations. By simple

-
inspection of these equations, we can see that at short

times the mean field approximation holds. It is also evi-
dent that the memory term dominates the long-time

behavior. At long time, the following asymptotic
behaviors are found:
Int _
t)~——————t 12, (22a)
2yT(1)V8D
172
nit)~ |— i (220)
yIT(3)V'8D

We have simulated the equivalent system on a one-
dimensional lattice. We have distributed uniformly an
equal number of 4 and B particles through the lattice.
One particle has a probability AAt of moving to either the
left or right. Several particles of the same class can coex-
ist in the same site, to avoid the extra interaction of the
volume effect. When two particles 4 and B meet in the
same place, they can annihilate with a probability BAt.
Concerning this point, we have considered two cases, one
with correlate annihilation (CA) and the other with in-
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FIG. 1. Evolution of the
mean density of A4 particles in
one dimension. The continuous
lines are the solutions of Egs.
(18) and (19). Circles and
squares are the result of the
simulation of the system on a
10000 site grid, with periodic
boundary conditions. The cir-
cles show the average of ten real-
izations with the particles distri-
buted randomly over the whole
system. The squares show the
average of 30 realizations with
the particles initially distributed
within ten cells. The inset shows
the two lower curves on another

o
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dependent annihilation (IA).. In the first situation, both
particles annihilate simultaneously with the indicated
probability. In the second case, each particle annihilates
independently of the other, with the same probability.
The IA case corresponds exactly to the simulation of the
following master equation:

dP(r,t)

” =AP(r—1,t)+AP(r+1,t)—2AP(r,t)

— > B3, ,p P(r,t), (23)

i !
where P(r,t) is the probability for the ith particle of class
A of being at site r, and s, is the position of the jth par-

ticle of class B. By taking a length scale A, it is straight-
forward to obtain the continuous limit of (23) which, un-

102

nA(t)

10° B

Random initial distributions within 100 cells

104 EPEPTTTTN | NPT ST B R T |
0.1 1 10 100 1000

t (arb. units)

FIG. 2. Evolution of the mean density of A4 particles in two
dimensions. The curves correspond to the simulation of the
process on a grid of 200X 200 with periodic boundary condi-
tions and 5000 particles. The upper cure corresponds to a ran-
dom initial distribution over the whole square, while the lower
one corresponds to the distribution within 100 cells.

scale, showing the behavior of
Eq. (22a). The parameters are
D=1,y=1.

der the constraints (A—0;A,B— ), gives D =AA? and
y=BA, and with P(r,0)=38,,, reproduces Eq. (6) with
H _(r)=¥6(r) and n(r,0)=5(r).

Since the averaging of (23) can be done exactly, it is not
surprising to find rather good agreement between the
simulations in the IA case and the solutions of (21a) and
(21b). Simulations with CA would correspond to a more
complicated master equation in which all particles enter
simultaneously. It is not the aim of this work to deal
with this complicated master equation but to show that
simulations with IA are good approximations to the more
usual case of CA. Consequently our analytical method
turns out to be well suited to explain Monte Carlo simu-
lations (see Fig. 1). Simulations on this figure correspond
to a case with IA and imperfect reaction (A <<D /A).
The curves (a) correspond to a random initial condition
with a Poisson interparticle distribution, while the curves
(b) correspond to a still random initial distribution but
with lower spatial fluctuations, generated by a random
setting of particles within cells. It can be seen that the
solutions of (21a) and (21b) agree quite well with the
simulation of these cases.

V. ASYMPTOTIC ANALYSIS IN N DIMENSIONS

Most papers in the recent literature on diffusion-
dominated annihilation have focused on the study of
propagation of initial fluctuations and their relation with
other phenomena [1-10]. However, the apparently
easier problem of uniform evolution and comparison with
simulations has scarcely been treated. This is mainly due
to the lack of simple equations taking into account the
fluctuations in the evolution process that arise from the
reaction itself. Equations (17a) and (17b) have the leading
contributions of these fluctuations and, as we show in the
following, can be easily analyzed.

In more than one dimension, and due to the complica-
tions of inverting the Laplace transform of T(k =0,s), it
is more difficult to obtain a time evolution equation like
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(21a). However, it is possible to perform an asymptotic analysis. In order to do it, we consider Eq. (18a) with the corre-

sponding kernel in each dimension:

K (s)= ; Ve 73 , (24a)
Ve S€ s
1+ — — | {1=D| | ==
VaDs P |2D { | € ]
Ky(s)= Te , (24b)
_ £ ex ﬁ E. _.__62_s
87D 2D | 2D
Ki(s)= 7 Ye 7 , (24¢)
Ye 1 |5 | ool®€ | li—ol ||
87D eVm | 2D P12D 2D
r
where E; and ® are the exponential integral and the  sion the reaction time is given by B~ '=ey !, whereas

Fresnel functions, respectively.
The first point to note is that in all cases the short-time
behavior leads to the mean field equation:

dn

dt

Hence, if we introduce as usual the equivalent rate
coefficient K & as the necessary coefficient to validate the
classical equation

Yen®. 25)

2

dn _
efft >

a K

(26)

we can conclude that the short-time behavior is con-
trolled by the usual coefficient of chemical kinetics
Y =BV, V being the volume of the particle.

The long-time behavior is more involved and needs a
separate analysis for each dimension. However, there are
general features that are worth mentioning. For long
times, s —0, the parameter v, is irrelevant since it does
not appear in the kernel. This means that for long times,
perfect or imperfect reactions give the same result.
Moreover, since reactions with IA and CA are equivalent
when the reaction is perfect, one can expect that for long
times both cases behave identically. Then the essential
difference between perfect and imperfect reactions is the
sensitivity to the initial conditions. An imperfect reac-
tion is less sensitive to fluctuations in the initial condi-
tions since the time between reactions is longer and there
is more time for diffusion to homogenize initial fluctua-
tions.

Recalling the asymptotic analysis in one dimension and
taking into account the behavior of K, for s—0,
K,(s)~V'8Ds, it is easy to deduce the asymptotic form

of n(t),
n(0) ]l/zt—1/4

MO~ WD

’

which agrees with simulations [18]. As we have shown
above, this is a typical behavior indicating segregation of
like particles. From (24a), one deduces an effective
coefficient given by K.z~n(t)*/4a%. Due to its time
dependence, it is an anomalous coefficient. In one dimen-

the collision time, which is the same for any number of
dimensions, is A"!=¢€?/D. So the reaction is perfect
whenever € > D /y. The relative probability of reaction is
B/(A+B)=ve/(D+ye). When 7 is finite and € is small
(very slow reaction), the time between reactions is very
large, (D+ve)/yen”!, and any initial condition be-
comes uniform in this time. Hence the evolution must be
independent of the initial conditions. However, despite
its long homogenization time ( ~¢~!), segregation occurs
due to the compactness of diffusion in one dimension.
The number of times a given site is visited is also of order
€ .
The two-dimensional (2D) case can be analyzed in a
similar manner. The asymptotic behavior of the kernel is
now K,(s)~ —8wD In(€%s /2D ), leading to an asymptotic
behavior of the Laplace transformed density as
n(s)~—[8wD In(e’s /2D)]~!. This expression has the
logarithmic correction typical of a marginal dimension.
However, for the time dependent behavior, this correc-
tion does not exist, n(z)~t~!. Hence the effective
coefficient is constant and the result is not anomalous.
We conclude that in the case of a uniform initial condi-
tion, the critical dimension for segregation is 2. This con-
clusion requires some explanation since it is in apparent
contradiction with most of the analysis and simulations
appearing in the literature. The problem arises because
all distributions used for modeling uniform initial condi-
tions are Poissonian. Then a simple scaling argument
leads to the conclusion that in two dimensions the propa-
gation of the initial spatial fluctuations gives segregation
and, consequently, a n(t)~t !/ behavior must be ob-
served [4]. This is in agreement with the simulations.
The apparent contradiction can be solved by choosing a
distribution, other than Poissonian, with smaller spatial
fluctuations. When doing that, a n(z)~t ! asymptotic
behavior is obtained (see Fig. 2). For a continuous and
completely uniform initial density, no segregation should
develop.

Finally, in the three-dimensional case, one has
K4(s)~8mD(eV'w), obtaining for the temporal evolution
of the density n(¢)~8wD(eVw)™!, and for the effective
coefficient the classical result of Smoluchovsky,
K 4= 8wD(eV'm) [19], where we identify the radius of the

particle with V're. The reaction time is 8~ '=y ~'¢’, and
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the reaction is perfect when y >>e/D, For finite ¥ and
small € the reaction is very fast; the relative probability of
the reaction (1+yeD) ™! is large, and there will be great
sensitivity to the initial conditions.

VI. CONCLUSIONS

By extending a previous result for the reaction
A +B— B [16], we have derived a systematic method for
obtaining evolution equations for the densities in two
species annihilation reactions. We have assumed that the
evolution between collisions is diffusive, and that there is
a finite probability of annihilation in any collision of un-
like particles. Our results describe the behavior of the
densities, not only asymptotically but in the whole range
of times. The predicted behavior was verified via numeri-
cal simulations in one and two dimensions. We have
found a critical dimension of 2 for absolutely uniform ini-
tial conditions, meaning that in three dimensions mean
field approximations are valid at all times. This apparent
contradiction with previous results (e.g., [(1€),9]) is due
exclusively to the character of the initial condition. In
two dimensions, the time needed for the system to blur
the initial condition is extremely large. The segregation
observed in two-dimensional simulations is due to the
inevitable initial fluctuations of discrete distributions.
However, the true asymptotic stage of the evolution is
finally achieved, and the crossover from the ¢ ~!/2 to the
t ! behavior is seen in our simulations. This controversy
will be discussed in detail elsewhere [20]. Spatial prob-
lems, such as the propagation of reaction fronts [21-29],
can be adequately treated by this procedure [30]. Similar
methods can be set up to analytically treat other related
reactions (e.g., annihilation or coagulation of like parti-
cles, etc.). These and other extensions are the subject of
further work.
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tion. See the Appendix.
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APPENDIX

In order to make a representation of (11) in diagram-
matic form, we consider the following criteria for the
construction of diagrams. The basic structure of a dia-
gram of nth order is a sequence of n+2 points
(z,2y,23, .- -,2,,2') joined by a solid line, which
represents the Green function G. The square in the last
point z' corresponds to the initial condition
nil(z'|-)8(t")n 4(z') [Fig. 3(a)].

As shown in Fig. 3(b), on top of this structure there are
clusters. A loop from a point z; to another point z;,

represents the WH function. The last point of the

cluster (with a cross) represents the function nfl(z; It ).

The cluster is built by several joined loops ﬁmshmg w1th
a crossed point.

A general diagram consists of the superposition of clus-
ters. All points of the basic structure must be occupied
by either loops or crosses. Each point belongs to one
cluster only. The extreme cases of expression (11) are de-
picted in Figs. 3(c) and 3(d). In this figure, we also
present, as an example, a mixed term of fourth order
given by

zzan(Zl,z) z),24 ZSZ (Z lt )nB(Z4)

(@ =—=,=

TZ‘,,z; Gz; 2y

(b) A@={=—="+ @ +
. £ .

(c) ‘AA(z)= —R + ——x ‘,4‘(7)

FIG. 5. Diagrammatic representation of the approximation
of the absorption function. See the Appendix.
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[Fig. 3(e)].

Equation (14) in this diagrammatic representation is
represented in Fig. 4(a). The leading contribution for
long times [Eq. (12)] is given in Fig. 4(b). The cluster in
this figure can be summed up [Eq. (13)] giving a new
basic structure in which the solid line is substituted by a
double solid line representing a new propagator given by
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T, .G, . The rest of the representation remains un-
1°°2 22

changed, but now clusters with loops between nearest
neighbors do not appear [see Fig. 5(b)]. Finally, the lead-
ing contribution for short times given by diagrams
without loops can also be taken into account through the
integral equation (15), which in diagrammatic representa-
tion is given in Fig. 5(c).
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